http://www.cnn.com/2014/10/14/tech/innovation/navy-exoskeleton-fortis/index.html
(Wired) -- Military work is physically demanding—and we're not just talking about soldiers on the battlefield. Travel down the chain, and you'll find plenty of positions where strength and stamina are highly valued skills.
Take the Navy for
example. The Navy needs ships and those ships need to be built and
maintained—a rough, physically draining job. Sandblasting, riveting, and
grinding excess metal off the ships can take a toll on the human body.
You're often carrying tools that can weigh upwards of 30 pounds.
"There's a lot of wear
and tear on you," says Adam Miller, director of new initiatives for
Lockheed Martin. "Skilled workers can maybe do that for three to four
minutes then they need to put the tool down and they need to rest."
For the past couple of
years, Miller has been leading a team of engineers and designers to
create one of the first industrial-use exoskeletons. Called the FORTIS,
the exoskeleton is able to support tools of up to 36 pounds and
transfer that load from a worker's hands and arms to the ground. The
goal is to lighten workers' loads, ultimately making them more
productive and skilled at their jobs.
The U.S. Navy recently
bought two of the exoskeletons and plans to test them over the next six
months to see how they might be used in an industrial situation.
Compared to something
like the TALOS (Tactical Assault Light Operator Suit), a computerized
exoskeleton that essentially wants to turn mere mortals into Iron Man,
the FORTIS is fairly simple.
"I would call it
elegant," says Miller. The anodized aluminum and carbon fiber skeleton
weighs 30 pounds, and follows along the outside of a human's body. It
has joints in the parts of the body that would regularly have joints
(ankle, knee, hip) and flexes from side to side at the waist. Miller
says the skeleton was designed for complex environments—whoever is
wearing it can climb stairs or a ladder, squat and generally move
business as usual in the exoskeleton.
Tools mount to the front
of the FORTIS and that weight is directed through the joints in the hip
and down to the floor, relieving stress on the entire body, including
the feet and ankles.
Watch and Learn
The design team began by
watching how humans walk. "You have to look at biomechanics of the
person because it's not just a stand; it's really something they can
move around in," says Miller. The FORTIS was designed so it could slip
over a worker's boot—this is important since feet often communicate the
first signs of weariness. It's like running in a pair of crappy shoes;
it impacts your entire body. Many exoskeletons transfer that weight to
the sole of the foot, but this is a problem, says Miller.
"When the weight of the
tools and exoskeleton itself is transferred to the ground, it comes to
rest on the sole," he says. "However, a sole can also contribute to user
discomfort, increased metabolic cost to the user and introduces
instability." Instead, the FORTIS uses a stirrup that attaches to the
ankle, allowing the foot to rest on the ground as usual.
I would call it elegant.
Adam Miller, Lockheed Martin
Early tests show that
the exoskeleton has increased productivity anywhere from two to 27
times, depending on the task. The team measured the amount of time a
worker could hold a 16-pound grinder overhead without having to rest his
arms. "The longest operators could work continuously without a break
was three minutes sustained without augmentation," says Miller. "Using
the FORTIS, operators could work 30 minutes or longer without requiring
rest breaks."
Lockheed Martin has been
developing exoskeleton technology for the past five years. Its other
exoskeleton, the HULC, is hydraulic-powered and can support up to 200
pounds. The HULC was designed to be used on the field, during battle.
The FORTIS' capabilities
are scaled down, but with its focus on mobility, you can imagine that
it could be useful for other industries like construction or
mining—"anywhere there's a complex and irregular environment," says
Miller. "We're expecting other industries to see it and say, 'We want
something similar.'"