RE: drones for film:
When I was doing 3D animation, we would
animate cameras like any other object. Typically, you can create motion
paths in 3D space so that the movement can accelerate and travel
smoothly. Certainly, one could program a drone in this same way, similar
to the rollercoaster simulation coupled with oculus rift.
No reason that an
operator would have to navigate a drone - the article below made me
think about this - imagine if an intelligent drone could operate from a
library of established routes and routines with enough smart factor to
adapt autonomously depending on conditions. I suppose the drone could
begin creating it's own library of routes. I'm not sure I'll ever be
ready to board a drone for transport. A heavy duty transport drone.
The research paves the way for robots to work intelligently alongside
humans in ways that are currently familiar only through science fiction
films. The robots could play important roles in crisis situations such
as search and rescue missions, or operate in environments where it would
be dangerous for humans to work.
Using simple flying robots, called Quadcopters, the team, based in Sheffield’s Department of Automatic Control and Systems Engineering (ACSE), has created software that enables the robot to learn about its surroundings using a forward facing camera mounted at the front of the machine.
The robot starts with no information about its environment and the objects within it. By overlaying different frames from the camera and selecting key reference points within the scene, it builds up a 3D map of the world around it. Other sensors pick up barometric and ultrasonic data, which give the robot additional clues about its environment. All this information is fed into autopilot software to allow the robot to navigate safely, but also to learn about the objects nearby and navigate to specific items.
"We are used to the robots of science fiction films being able to act independently, recognise objects and individuals and make decisions," explains Professor Sandor Veres, who is leading the research. "In the real world, however, although robots can be extremely intelligent individually, their ability to co-operate and interact with each other and with humans is still very limited.
"As we develop robots for use in space or to send into nuclear environments – places where humans cannot easily go – the goal will be for them to understand their surroundings and make decisions based on that understanding."
Another key task for these robots is to be able to interact and co-operate with each other without overloading communications networks – a vital ability in emergency situations where networks will already be overloaded.
Programming developed by the team enables the Quadcopters to work out how to ‘politely’ fly past each other without colliding. The robots start off flying at the same altitude and then need to collaborate to work out which robot would fly higher and which would fly lower so they are able to pass.
"The learning process the robots use here is similar to when two people meet in the street and need to get round each other," explains ACSE research fellow, Dr Jonathan Aitken. "They will simultaneously go to their left or right until they coordinate and avoid collision."
The researchers used a computer concept called game theory to programme the quadcopters. In this framework, each robot is a player in the game and must complete its given task in order to ‘win’ the game.
If the robots play the game repeatedly they start to learn each other’s behaviour. They can then perform their task successfully – in this case getting past the other robot – by using previous experience to estimate the behaviour of the other robot.
"These simple tasks are part of a major research effort in the field of robotics at Sheffield University," says Professor Veres. "The next step is to extend the programming capability so that multiple robots can collaborate with each other, enabling fleets of machines to interact and collaborate on more complex tasks."
The Faculty of Engineering at the University of Sheffield - the 2011 Times Higher Education’s University of the Year - is one of the biggest and best engineering faculties in the UK. Its seven departments include over 4,000 of the brightest students and 900 staff, and have research-related income worth more than £50M per annum from government, industry and charity sources. Its research income recently overtook the University of Cambridge, confirming its status as one of the best institutions in the world to study engineering. The 2008 Research Assessment Exercise (RAE) confirmed that two thirds of the research carried out was either Internationally Excellent or Internationally Leading.
The Faculty’s expertise is extensive – its academic departments and two interdisciplinary programme areas cover all the engineering disciplines. They are leaders in their fields and outstanding contributors to the development of new knowledge, with world-leading academics linking their research to the teaching of the engineers of tomorrow.
The Faculty has a long tradition of working with industry including Rolls-Royce, Network Rail and Siemens. Its industrial successes are exemplified by the award-winning Advanced Manufacturing Research Centre (AMRC) and the new £25 million Nuclear Advanced Manufacturing Research Centre (NAMRC).
The Faculty of Engineering is committed to ensuring students studying at Sheffield continue to benefit from world-class labs and teaching space through the provision of the University's new Engineering Graduate School. This brand new building, which will become the centre of the faculty´s postgraduate research and postgraduate teaching activities, will form the first stage in a 15 year plan to improve and extend the existing estate in a bid to provide students with the best possible facilities while improving their student experience.
Engineering in Sheffield
Shemina Davis
Media Relations Manager
The University of Sheffield
0114 22 5339
shemina.davis@sheffield.ac.uk
Using simple flying robots, called Quadcopters, the team, based in Sheffield’s Department of Automatic Control and Systems Engineering (ACSE), has created software that enables the robot to learn about its surroundings using a forward facing camera mounted at the front of the machine.
The robot starts with no information about its environment and the objects within it. By overlaying different frames from the camera and selecting key reference points within the scene, it builds up a 3D map of the world around it. Other sensors pick up barometric and ultrasonic data, which give the robot additional clues about its environment. All this information is fed into autopilot software to allow the robot to navigate safely, but also to learn about the objects nearby and navigate to specific items.
"We are used to the robots of science fiction films being able to act independently, recognise objects and individuals and make decisions," explains Professor Sandor Veres, who is leading the research. "In the real world, however, although robots can be extremely intelligent individually, their ability to co-operate and interact with each other and with humans is still very limited.
"As we develop robots for use in space or to send into nuclear environments – places where humans cannot easily go – the goal will be for them to understand their surroundings and make decisions based on that understanding."
Another key task for these robots is to be able to interact and co-operate with each other without overloading communications networks – a vital ability in emergency situations where networks will already be overloaded.
Programming developed by the team enables the Quadcopters to work out how to ‘politely’ fly past each other without colliding. The robots start off flying at the same altitude and then need to collaborate to work out which robot would fly higher and which would fly lower so they are able to pass.
"The learning process the robots use here is similar to when two people meet in the street and need to get round each other," explains ACSE research fellow, Dr Jonathan Aitken. "They will simultaneously go to their left or right until they coordinate and avoid collision."
The researchers used a computer concept called game theory to programme the quadcopters. In this framework, each robot is a player in the game and must complete its given task in order to ‘win’ the game.
If the robots play the game repeatedly they start to learn each other’s behaviour. They can then perform their task successfully – in this case getting past the other robot – by using previous experience to estimate the behaviour of the other robot.
"These simple tasks are part of a major research effort in the field of robotics at Sheffield University," says Professor Veres. "The next step is to extend the programming capability so that multiple robots can collaborate with each other, enabling fleets of machines to interact and collaborate on more complex tasks."
Additional information
Engineering in SheffieldThe Faculty of Engineering at the University of Sheffield - the 2011 Times Higher Education’s University of the Year - is one of the biggest and best engineering faculties in the UK. Its seven departments include over 4,000 of the brightest students and 900 staff, and have research-related income worth more than £50M per annum from government, industry and charity sources. Its research income recently overtook the University of Cambridge, confirming its status as one of the best institutions in the world to study engineering. The 2008 Research Assessment Exercise (RAE) confirmed that two thirds of the research carried out was either Internationally Excellent or Internationally Leading.
The Faculty’s expertise is extensive – its academic departments and two interdisciplinary programme areas cover all the engineering disciplines. They are leaders in their fields and outstanding contributors to the development of new knowledge, with world-leading academics linking their research to the teaching of the engineers of tomorrow.
The Faculty has a long tradition of working with industry including Rolls-Royce, Network Rail and Siemens. Its industrial successes are exemplified by the award-winning Advanced Manufacturing Research Centre (AMRC) and the new £25 million Nuclear Advanced Manufacturing Research Centre (NAMRC).
The Faculty of Engineering is committed to ensuring students studying at Sheffield continue to benefit from world-class labs and teaching space through the provision of the University's new Engineering Graduate School. This brand new building, which will become the centre of the faculty´s postgraduate research and postgraduate teaching activities, will form the first stage in a 15 year plan to improve and extend the existing estate in a bid to provide students with the best possible facilities while improving their student experience.
Engineering in Sheffield
Contact
For further information, please contact:Shemina Davis
Media Relations Manager
The University of Sheffield
0114 22 5339
shemina.davis@sheffield.ac.uk