This protozoan is so unique, it belongs to a whole new kingdom, say researchers
Talk about extended family: A single-celled organism in Norway
has been called "mankind's furthest relative." It is so far removed from
the organisms we know that researchers claim it belongs to a new base
group, called a kingdom, on the tree of life.
In this study, published March 21 in the journal Molecular Biology Evolution, the researchers were able to grow enough of the protozoans, called Collodictyon, in the lab to analyze its genome. They found it doesn't genetically fit into any of the previously discovered kingdoms of life. It's an organism with membrane-bound internal structures, called a eukaryote, but genetically it isn't an animal, plant, fungi, algae or protist (the five main groups of eukaryotes).
"The microorganism is among the oldest currently living eukaryote organism we know of. It evolved around one billion years ago, plus or minus a few hundred million years. It gives us a better understanding of what early life on Earth looked like," Shalchian-Tabrizi said.
Mix of features What it looked like was small. The organism the researchers found is about 30 to 50 micrometers (about the width of a human hair) long. It eats algae and doesn't like to live in groups. It is also unique because instead of one or two flagella (cellular tails that help organisms move) it has four.
The organism also has unique characteristics usually associated with protists and amoebas, two different eukaryotic kingdoms. This left researchers wondering where the microorganism fits into the tree of life. They analyzed its genetic code to see how similar it is to organisms that have already been genetically catalogued.
New life The researchers think this organism belongs in a new group on the tree of life. Researchers can't say for certain if other organisms previously classified as protozoans are in this same branch without their genetic information. Its closest known genetic relative is the protist Diphylleia, though other organisms that haven't been analyzed genetically may be closer relatives.
"It is conceivable that only a few other species exist in this family branch of the tree of life, which has survived all the many hundreds of millions of years since the eukaryote species appeared on Earth for the first time," Klaveness said.
Because it has features of two separate kingdoms of life, the researchers think that the ancestors of this group might be the organisms that gave rise to these other kingdoms, the amoeba and the protist, as well. If that's true, they would be some of the oldest eukaryotes, giving rise to all other eukaryotes, including humans.